Characteristic curves for Set-Valued Hamilton-Jacobi Equations

نویسندگان

چکیده

Abstract The method of characteristics is extended to set-valued Hamilton-Jacobi equations. This problem arises from a calculus variations’ with multicriteria Lagrangian function: through an embedding into framework, equation derived, where the Hamiltonian function Fenchel conjugate function. In this paper described and some results are given for conjugate.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton-Jacobi-Bellman Equations

This work treats Hamilton-Jacobi-Bellman equations. Their relation to several problems in mathematics is presented and an introduction to viscosity solutions is given. The work of several research articles is reviewed, including the Barles-Souganidis convergence argument and the inaugural papers on mean-field games. Original research on numerical methods for Hamilton-Jacobi-Bellman equations is...

متن کامل

Hypercontractivity of Hamilton–jacobi Equations

– Following the equivalence between logarithmic Sobolev inequalities and hypercontractivity showed by L. Gross, we prove that logarithmic Sobolev inequalities are related similarly to hypercontractivity of solutions of Hamilton–Jacobi equations. By the infimum-convolution description of the Hamilton–Jacobi solutions, this approach provides a clear view of the connection between logarithmic Sobo...

متن کامل

Schrödinger and Hamilton-jacobi Equations

Time-dependent Schrödinger equation represents the basis of any quantum-theoretical approach. The question concerning its proper content in comparison to the classical physics has not been, however, fully answered until now. It will be shown that there is one-to-one physical correspondence between basic solutions (represented always by one Hamiltonian eigenfunction only) and classical ones, as ...

متن کامل

Fractal Hamilton-Jacobi-KPZ equations

Nonlinear and nonlinear evolution equations of the form ut = Lu ± |∇u| q, where L is a pseudodifferential operator representing the infinitesimal generator of a Lévy stochastic process, have been derived as models for growing interfaces in the case when the continuous Brownian diffusion surface transport is augmented by a random hopping mechanism. The goal of this paper is to study properties o...

متن کامل

Weighted ENO Schemes for Hamilton-Jacobi Equations

In this paper, we present a weighted ENO (essentially non-oscillatory) scheme to approximate the viscosity solution of the Hamilton-Jacobi equation: = 0: This weighted ENO scheme is constructed upon and has the same stencil nodes as the 3 rd order ENO scheme but can be as high as 5 th order accurate in the smooth part of the solution. In addition to the accuracy improvement, numerical compariso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Set-valued and Variational Analysis

سال: 2023

ISSN: ['1877-0541', '1877-0533']

DOI: https://doi.org/10.1007/s11228-023-00685-0